Skip to article frontmatterSkip to article content

2.2 One Dimensional Flow Relations

Indian Institute of Technology, Kharagpur

Problem Setup

Consider a flow moving along the xx-axis with variations only in that direction. A control volume of very small width is defined, with fluid properties at the inlet (1) and outlet (2) denoted as follows:

Rectangular control volume for one-dimensional flow

Figure 1:Rectangular control volume for one-dimensional flow Anderson (1990)

Derivation

1. Mass Conservation The continuity equation, based on mass conservation, is:

Sρvds=tVρdV-\int_S \rho \mathbf{v} \cdot d\mathbf{s} = \frac{\partial}{\partial t} \int_V \rho dV

For steady flow (t=0\frac{\partial}{\partial t} = 0):

Sρvds=0\int_S \rho \mathbf{v} \cdot d\mathbf{s} = 0

Along the xx-direction:

ρ1u1A+ρ2u2A=0-\rho_1 u_1 A + \rho_2 u_2 A = 0

Thus, ρ1u1=ρ2u2\rho_1 u_1 = \rho_2 u_2. This is our first relation.

2. Momentum Equation

The momentum equation balances forces and momentum fluxes across the control volume, considering pressure and velocity changes.

The general form is:

S(ρvds)v+VρvtdV=Spds+SpfdV\int_S (\rho \mathbf{v} \cdot d\mathbf{s}) \mathbf{v} + \int_V \frac{\partial \mathbf{\rho v}}{\partial t} dV = -\int_S p d\mathbf{s} +\int_S p \mathbf{f} dV

For steady flow with no body forces (f=0\mathbf{f}=\mathbf{0}):

S(ρvds)v=Spds\int_S (\rho \mathbf{v} \cdot d\mathbf{s}) \mathbf{v} = -\int_S p d\mathbf{s}

Along xx:

ρ1u12A+ρ2u22A=p1Ap2A-\rho_1 u_1^2 A + \rho_2 u_2^2 A = p_1 A - p_2 A

The integrated form yields:

p1+ρ1u12=p2+ρ2u22p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2

3. Energy Equation The energy equation accounts for internal energy, kinetic energy, heat, and work across the control volume. The energy equation is:

Vq˙ρdVSpvdS+Vρ(fv)dV=Vt(ρ(e+v22))dV+Sρ(e+v22)vdS\int_V {\dot{q} \rho dV} - \int_S {p\mathbf{v} \cdot d\mathbf{S}} + \int_V \rho (\mathbf{f}\cdot \mathbf{v})dV = \int_V {\frac{\partial}{\partial t} (\rho \left( e + \frac{v^2}{2} \right)) dV} + \int_S {\rho \left( e + \frac{v^2}{2} \right)} \mathbf{v}\cdot d\mathbf{S}

Here v=v|\mathbf{v}|=v

For steady flow and zero body force, we get:

Vq˙ρdVSpvdS=Sρ(e+v22)vdS\int_V {\dot{q} \rho dV} - \int_S {p\mathbf{v} \cdot d\mathbf{S}} = \int_S {\rho \left( e + \frac{v^2}{2} \right)} \mathbf{v}\cdot d\mathbf{S}

Integrating along xx direction, we get:

ρ1(e1+u122)u1A+ρ2(e2+u222)u2A=Q˙(p1u1A+p2u2A)-\rho_1 \left( e_1 + \frac{u_1^2}{2} \right) u_1 A + \rho_2 \left( e_2 + \frac{u_2^2}{2} \right) u_2 A = \dot{Q} - (-p_1 u_1 A + p_2 u_2 A)

Here we define Q˙\dot{Q} as the net rate of heat added to the control volume On rearranging, we get:

Q˙A+p1u1+ρ1(e1+u122)u1=p2u2+ρ2(e2+u222)u2\frac{\dot{Q}}{A} + p_1 u_1 + \rho_1 \left( e_1 + \frac{u_1^2}{2} \right) u_1 = p_2 u_2 + \rho_2 \left( e_2 + \frac{u_2^2}{2} \right) u_2

Dividing the left-hand side of equation by ρ1u1\rho_1 u_1 and the right-hand side by ρ2u2\rho_2 u_2 (since ρ1u1=ρ2u2\rho_1u_1=\rho_2u_2 from (3)):

Q˙ρ1u1A+p1ρ1+e1+u122=p2ρ2+e2+u222\frac{\dot{Q}}{\rho_1 u_1 A} + \frac{p_1}{\rho_1} + e_1 + \frac{u_1^2}{2} = \frac{p_2}{\rho_2} + e_2 + \frac{u_2^2}{2}

Using enthalpy h=e+pρh = e + \frac{p}{\rho} and mass flow rate m˙=ρ1u1A\dot{m} = \rho_1 u_1 A:

Q˙m˙+h1+v122=h2+v222\frac{\dot{Q}}{\dot{m}} + h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}

Here, the ratio Q˙m˙\frac{\dot{Q}}{\dot{m}} is simply the heat added per unit mass, q

Hence,

q+h1+v122=h2+v222q + h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}
References
  1. Anderson, J. D. (1990). Modern compressible flow: with historical perspective. (None).